Towards Using EEG to Improve ASR Accuracy
نویسندگان
چکیده
We report on a pilot experiment to improve the performance of an automatic speech recognizer (ASR) by using a single-channel EEG signal to classify the speaker’s mental state as reading easy or hard text. We use a previously published method (Mostow et al., 2011) to train the EEG classifier. We use its probabilistic output to control weighted interpolation of separate language models for easy and difficult reading. The EEG-adapted ASR achieves higher accuracy than two baselines. We analyze how its performance depends on EEG classification accuracy. This pilot result is a step towards improving ASR more generally by using EEG to distinguish mental states.
منابع مشابه
Idiap - Rr 01 - 31 Eeg Pattern Recognition through Multi - Stream
EEG recordings provide an important means of brain-computer communication, but their classification accuracy is limited by unforeseeable variations in the signal due to artefacts or recogniser-subject feedback. A number of techniques were recently developed to address a related problem of recogniser robustness to uncontrollable signal variation which also occurs in automatic speech recognition ...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملPredicting Barge-in Utterance Errors by using Implicitly-Supervised ASR Accuracy and Barge-in Rate per User
Modeling of individual users is a promising way of improving the performance of spoken dialogue systems deployed for the general public and utilized repeatedly. We define “implicitly-supervised” ASR accuracy per user on the basis of responses following the system’s explicit confirmations. We combine the estimated ASR accuracy with the user’s barge-in rate, which represents how well the user is ...
متن کاملComparing EEG and fNIRS for a covert attention BCI
Introduction: Visual hemispatial neglect is a common post-stroke neuropsychological deficit, impairing the ability to deploy spatial attention towards one side of the visual field. Neurophysiological studies have unveiled neural correlates of covert attention deployed towards the left versus the right hemifield, using both functional magnetic resonance imaging (fMRI, [1]) and electroencephalogr...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کامل